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Peripheral administration of SOD1 
aggregates does not transmit pathogenic 
aggregation to the CNS of SOD1 transgenic 
mice
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Abstract 

The deposition of aggregated proteins is a common neuropathological denominator for neurodegenerative dis-
orders. Experimental evidence suggests that disease propagation involves prion-like mechanisms that cause the 
spreading of template-directed aggregation of specific disease-associated proteins. In transgenic (Tg) mouse mod-
els of superoxide dismutase-1 (SOD1)-linked amyotrophic lateral sclerosis (ALS), inoculation of minute amounts of 
human SOD1 (hSOD1) aggregates into the spinal cord or peripheral nerves induces premature ALS-like disease and 
template-directed hSOD1 aggregation that spreads along the neuroaxis. This infectious nature of spreading patho-
genic aggregates might have implications for the safety of laboratory and medical staff, recipients of donated blood 
or tissue, or possibly close relatives and caregivers. Here we investigate whether transmission of ALS-like disease is 
unique to the spinal cord and peripheral nerve inoculations or if hSOD1 aggregation might spread from the periphery 
into the central nervous system (CNS). We inoculated hSOD1 aggregate seeds into the peritoneal cavity, hindlimb 
skeletal muscle or spinal cord of adult Tg mice expressing mutant hSOD1. Although we used up to 8000 times higher 
dose—compared to the lowest dose transmitting disease in spinal cord inoculations—the peripheral inoculations 
did not transmit seeded aggregation to the CNS or premature ALS-like disease in hSOD1 Tg mice. Nor was any hSOD1 
aggregation detected in the liver, kidney, skeletal muscle or sciatic nerve. To explore potential reasons for the lack of 
disease transmission, we examined the stability of hSOD1 aggregates and found them to be highly vulnerable to both 
proteases and detergent. Our findings suggest that exposed individuals and personnel handling samples from ALS 
patients are at low risk of any potential transmission of seeded hSOD1 aggregation.
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Introduction
Amyotrophic lateral sclerosis (ALS) is characterized by 
adult-onset progressive degeneration of upper and lower 
motor neurons. Symptoms begin focally and then spread 
contiguously, resulting in progressive paralysis and death 
from respiratory failure [18]. Previous research suggests 
that age-related neurodegenerative disorders, includ-
ing Alzheimer’s disease (AD), Parkinson’s disease (PD), 
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multiple system atrophy (MSA), frontotemporal demen-
tia, and ALS share a common pathogenic mechanism 
involving a prion-like spread of disease-associated mis-
folded protein aggregates [4, 11, 23, 43, 48]. Prion-like 
spread in neurodegenerative diseases may have implica-
tions for the safety of relatives, medical staff, and recipi-
ents of donated blood or tissue, especially if protein 
aggregates are able to spread from the periphery into the 
central nervous system (CNS).

Mutations in the gene encoding superoxide dis-
mutase-1 (SOD1) can cause ALS [53] and are found in 
1–9% of all patients, depending on the population [1]. 
Cytoplasmic neuronal inclusions containing aggregated 
SOD1 are a hallmark of ALS, both in patients and trans-
genic (Tg) animal models overexpressing mutant human 
SOD1 (hSOD1) [32]. A number of studies have pro-
vided compelling evidence for a prion-like propagation 
of hSOD1 aggregation in cell cultures [8, 19, 26, 27, 47, 
49]. We previously showed that inoculation of two dis-
tinct strains (type A and B) of hSOD1 aggregate seeds, 
prepared from the spinal cords from terminally ill Tg 
ALS-model mice into the spinal cords of asymptomatic 
Tg mice expressing mutant hSOD1, induced spreading 
of template-directed hSOD1 aggregation and premature 
fatal ALS-like disease [10, 11]. Furthermore, inoculation 
of ALS patient-derived hSOD1 aggregate seeds into the 
spinal cord also induced spreading aggregation, and an 
aggressive premature motor neuron disease in hSOD1 Tg 
mice [23]. Moreover, Ayers et al. found that both spinal 
cord and sciatic nerve inoculations, using homogenates 
from spinal cords of terminally ill hSOD1 Tg mice, trans-
mit ALS-like disease in mice expressing hSOD1 fused to 
yellow fluorescent protein [5, 6].

Similar to the infectious isoform of prion protein 
(PrPSc), aggregates of alpha-synuclein (αSyn), β-amyloid 
(Aβ), and tau are able to invade the CNS and induce 
seeded aggregation after peripheral injection in Tg mouse 
models of PD, MSA and AD [15, 17, 21, 22, 38, 54, 59]. In 
the case of PD, several studies have further suggested that 
αSyn aggregation may initially develop in the olfactory 
bulb, or the gut, and propagate to the CNS via neuroana-
tomically connected tracts [13, 14, 28, 34, 51].

Here we aimed to investigate whether efficient spread 
of seeded hSOD1 aggregation and ALS-like symptoms is 
unique to direct inoculations into the CNS and peripheral 
nerve, or if peripherally administered hSOD1 aggregates 
have the potential to spread into the CNS, e.g. via the 
circulation or neuromuscular junctions. We inoculated 
large amounts of hSOD1 aggregates into the peritoneal 
cavity or hindlimb skeletal muscle of adult asymptomatic 
hSOD1G85R Tg mice. In contrast to the highly pathogenic 
spinal cord inoculations, peripheral administration of 
hSOD1 aggregates did not induce spreading aggregation 

and premature ALS in the recipient mice. To explore 
potential reasons for the lack of transmission, we exam-
ined the stability of strain A hSOD1 aggregates and 
found them to be highly vulnerable to both proteases 
and detergent. Our findings suggest a low risk of trans-
mission for potentially exposed individuals and medical 
staff handling samples from ALS patients carrying SOD1 
mutations.

Materials and methods
Mouse husbandry and procedures
In this study, we used hemizygous Tg mice that express 
hSOD1G85R (line 148) [16] that were backcrossed for 
more than 30 generations and maintained on the 
C57BL/6J background. In our colony, the average lifes-
pan of hSOD1G85R mice is 398 ± 42 days (n = 86). There 
was no significant difference in lifespan between the 
sexes: females 401 ± 42 days (n = 38); males 395 ± 43 days 
(n = 48). Sacrificed non-Tg C57BL/6J mice from the 
breeding colony were used to make control spinal cord 
homogenates. All animals were housed under environ-
mentally controlled standard conditions with a 12 h light/
dark cycle and free access to food and water. To facilitate 
free access after the onset of paresis symptoms, a plate 
with wet food on the floor was provided daily.

Reagents and chemicals
Reagents and chemicals were obtained from Sigma-
Aldrich or Thermo Fisher Scientific unless stated 
otherwise.

Preparation of spinal cord homogenates used 
for inoculations
Homogenates containing strain A hSOD1 aggregates 
were prepared from the spinal cord and brainstem of ter-
minally ill hSOD1G85R Tg mice (359–446  days old) and 
control inoculum from a 300-day-old non-Tg C57BL/6 
mouse. Whole spinal cords and brainstem from the mice 
were homogenized in 10 weight volumes (w/v) of phos-
phate-buffered saline (PBS) using an Ultraturrax appara-
tus (IKA) for 20 s followed by sonication for 1 min and 
centrifugation at 1000 g for 10 min at 4 °C. The resulting 
supernatants were aliquoted and stored at − 80  °C until 
used for inoculations.

The hSOD1G85R  spinal cord homogenate  contained 
10 µg/ml of total hSOD1 and 1.62 µg/ml detergent-resist-
ant hSOD1 aggregates. The total protein contents of the 
hSOD1G85R and control homogenates were 2079  µg/ml 
and 2956  µg/ml, respectively, and were analyzed using 
the Pierce BCA Protein Assay (Thermo Fisher Scientific).
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Inoculations
Before surgeries, the recipient mice were anesthetized 
with 5% isofluorane (Baxter) in an induction chamber. 
The mice were fixed on a small animal stereotactic frame 
(Kopf Instruments) and anesthesia was maintained with 
1.5–2% isofluorane via a facemask. Before starting the 
surgery, mice were injected subcutaneously with Carpro-
fen (Rimadyl, 5 mg/kg, Pfizer) to relieve pain. The body 
temperature was monitored and regulated with a TCAT-
2LV temperature controller (AgnTho’s). After surger-
ies, physiological saline was injected subcutaneously for 
rehydration, and mice were placed on a heating blanket 
for recovery before being returned to their home cage. 
After the procedure, mice were monitored to ensure full 
mobility and no signs of impairment. Surgery clips were 
removed two weeks after surgery.

Intramuscular inoculations (i.m.) of the spinal cord 
homogenates were performed in ~ 100-day-old asymp-
tomatic  hSOD1G85R Tg mice. Mice were anesthetized, 
and the incision site was shaved and disinfected. A small 
incision in the skin of the right hindlimb to expose  the 
quadriceps femoris muscle. The needle was inserted 
∼ 1  mm deep into the right quadriceps femoris muscle 
and 10 µl of spinal cord homogenate was injected into the 
muscle during 3  min. Injections were performed using 
a 10  µl syringe with a beveled 26-gauge needle (Hamil-
ton). Separate syringes were used for each type of inocu-
lum to prevent any contamination. The syringe was then 
slowly retracted over 3 min and the skin incision closed 
with stainless steel clips (Reflex Autoclip System, 10 mm, 
AgnTho’s).

Spinal cord inoculations were performed as previously 
described [11, 23]. In summary, the recipient ~ 100-day-
old asymptomatic hSOD1G85R Tg mice were anesthe-
tized, and 1  µl of the spinal cord homogenate from the 
hSOD1G85R, or control mice was inoculated into the 
ventral horn of the left lumbar spinal cord between two 
vertebrae at the L2–L3 level. Injections were performed 
using a 5 µl syringe with a 33-gauge needle (Hamilton).

Intraperitoneal inoculations (i.p.) were performed in 
asymptomatic  hSOD1G85R  Tg mice that received two 
injections, each containing 150  µl of the spinal cord 
homogenate, and administered one week apart. No anes-
thesia was used on these animals.

Monitoring of mice
All mice were examined and weighed weekly. No obvi-
ous disturbances in bladder control or hindlimb sensory 
response were observed in any of the inoculated mice. 
Mice were sacrificed when considered terminally ill. The 
criterion for the terminal ALS-like disease was defined as 
advanced paralysis in both hindlimbs or more than 20% 

loss of body weight. In mice with prominent forelimb 
symptoms, end-stage criteria also included severe eye 
infection.

Excluded mice
Seven i.m. and one spinal cord inoculated hSOD1G85R 
Tg mice were excluded and not reported in Results, Dis-
cussion, Figures or Tables. Four mice that received i.m. 
inoculation of homogenate from hSOD1G85R Tg spi-
nal cord were euthanized 15, 62, 62, and 112  days after 
inoculation, respectively, due to non-surgery-related 
wounds. Three mice inoculated intramuscularly with 
homogenates from control mice were euthanized 44, 45, 
and 48  days after inoculation, respectively, due to non-
surgery-related wounds. One mouse that received spi-
nal cord inoculation with a 1:3 diluted homogenate from 
hSOD1G85R Tg spinal cord was euthanized 57 days after 
inoculation due to wound infection adjacent to the injec-
tion site. None of the excluded mice showed any paretic 
symptoms.

Tissue handling and immunohistochemistry
The i.p. inoculated mice were sacrificed following a lethal 
i.p. injection of pentobarbital (60 mg/mL, APL Pharma) 
and perfused transcardially with PBS. Peripheral tissues 
(liver, kidney, quadriceps femoris muscle, and sciatic 
nerve) were collected and snap-frozen in liquid nitro-
gen. The spinal cord was retrieved by flushing with saline 
using a syringe inserted caudally to sacral levels and was 
divided into two sagittal halves, and then into lumbar, 
thoracic, and cervical segments. One lateral half of each 
segment was snap-frozen in liquid nitrogen. Frozen tis-
sues were stored at − 80 °C until analysis. The other half 
of the spinal cord was immersion fixed in formalin for 
histopathology. The brains were dissected and divided 
into right and left hemispheres, cerebellum, and brain-
stem, and processed like the spinal cords. Fixed tissue 
was paraffin-embedded and 5 µm thick sections were cut 
with a microtome (Microm HM400) and mounted on 
glass slides.

Sections from the lumbar spinal cord and brainstem 
from six i.p. hSOD1G85R homogenate inoculated and six 
control inoculated mice were processed for immunohis-
tological analysis.

For immunofluorescence staining sections were 
deparaffinized, rehydrated, and pre-treated with Cell 
Conditioning 1 (CC1, pH 6, Ventana Medical Systems) 
solution at 95 °C for 76 min using the Ventana Bench-
mark Ultra (Ventana Medical Systems). After blocking 
with 10% (v/v) fetal bovine serum (FBS) in Tris-buff-
ered saline (TBS) containing 0.3% (v/v) Triton X-100 
for 1  h at room temperature, sections were incubated 
with 5% (v/v) FBS in TBS containing 0.1% (v/v) Triton 
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X-100 overnight at 4  °C with primary antibodies. The 
primary antibodies used were a rabbit anti-hSOD1 
antibody raised against a peptide corresponding to 
amino acids (aa) 131–153 (0.96  μg/ml) and a bioti-
nylated Griffonia Simplicifolia Lectin I (GSL I) isolectin 
B4 (20  μg/ml, B-1205, Vector Laboratories). Sections 
were washed with TBS and incubated for 2  h at room 
temperature with Alexa-Fluor conjugated Streptavidin 
(1:1000, Invitrogen) and 4′,6-diamidino-2-phenylindole 
(DAPI; 0.3  μM, Sigma-Aldrich) for nuclear counter-
staining. Following washing with TBS, sections were 
mounted with a Fluorescence Mounting Media (Dako). 
Images were obtained using an Olympus BX 61 micro-
scope equipped with cellSens Dimension imaging soft-
ware (cellSens Dimension 1.11, Olympus).

Quantitative binary epitope‑mapping assay
Human SOD1 aggregate contents in the peripheral tis-
sues of i.p. inoculated hSOD1G85R Tg mice were quantified 
using a binary epitope-mapping (BEM) assay previously 
described [10]. Tissue homogenates were prepared from 
the lumbar, thoracic, and cervical spinal cord, brainstem, 
brain, cerebellum, liver, kidney, quadriceps femoris muscle, 
and sciatic nerve of i.p. inoculated hSOD1G85R Tg mice. 
Tissues were homogenized in 25 volumes of ice-cold PBS 
containing 1.8  mM EDTA, 1  mM DTT, and a Complete 
EDTA-free protease inhibitor cocktail (Roche Diagnostics) 
using an Ultraturrax apparatus (IKA) for 20 s followed by 
sonication 1  min. The resulting crude tissue homogen-
ates were stored at − 80 °C for the subsequent analysis of 
hSOD1 aggregate contents. The tissue homogenates were 
further diluted in 20 volumes of PBS containing 1  mM 
DTT, 1.8 mM EDTA, and 1% (v/v) Nonidet P-40 (NP-40), 
sonicated for 30 s, and centrifuged at 1000 g for 10 min at 
4  °C. The resulting supernatants were serially diluted 1:1 
in PBS and hSOD1 aggregates were captured on 0.2  µm 
cellulose acetate filters using a 96-well dot-blot appara-
tus (Whatman GmbH). The blots were incubated with 
an anti-hSOD1 primary antibody overnight at 4  °C and 
developed as described for western blotting. The hSOD1 
aggregate content in tissue extracts was determined simi-
lar to western blot analysis. The primary antibody used for 
the quantitative BEM assay was a rabbit antibody raised 
against a peptide corresponding to aa 57–72 of hSOD1. 
Of the eight anti-peptide antibodies that cover the hSOD1 
sequence and are used in the BEM analysis, this antibody 
gives the strongest reaction with strain A aggregates. As 
standard for quantification by BEM assay, we used a fro-
zen aliquot of a spinal cord homogenate from an end-stage 
hSOD1G93A Tg mouse (set to 1).

Human SOD1 antibodies
The hSOD1 antibodies used in this study were raised 
against peptides corresponding to aa 24–39, 57–72, and 
131–153 in rabbits as previously described [25, 29], and 
purified using Protein A-Sepharose (GE Healthcare) 
followed by Sulfolink gel coupled to the respective tar-
get peptides (Thermo Fisher Scientific).

Strain A aggregate preparations for stability tests
Whole spinal cords from end-stage hSOD1G85R Tg mice 
were homogenized in 5 volumes of ice-cold PBS con-
taining 1.8  mM EDTA, 0.25  M guanidinium chloride, 
2% (v/v) NP-40, and a Complete EDTA-free protease 
inhibitor cocktail (Roche Diagnostics) using an Ultra-
turrax apparatus (IKA) for 20  s followed by sonication 
for 2 min. The homogenate was then diluted with 0.66 
volumes of water containing 1% (v/v) NP-40 to achieve 
physiological ionic strength (0.15  M salt), sonicated 
for 1 min, and centrifuged at 1000 g for 20 min at 4 °C. 
The supernatant was collected, supplemented with 3% 
iohexol and transferred to 4 ml UltraClear flexible ultra-
centrifugation tubes (Thermo Fisher Scientific) contain-
ing 0.25  ml (2  mm height) of 75.5% iohexol, followed 
by a layering of 1.5 ml (10 mm) of 13% iohexol, 1.5 ml 
(10 mm) of the homogenate containing 3% iohexol, and 
finally ≈ 0.75 ml PBS to fill up the tubes. The homoge-
nate was then centrifuged through the iohexol density 
cushion for 2 h at 360,000 g at 4 °C and the suspension 
containing aggregated hSOD1 and other heavy com-
ponents that sedimented to the 13%/75.5% iohexol 
interphase was collected. The iohexol was removed by 
dialysis against PBS (pH 7.0). The resulting prepara-
tion, which contained 1.39  µg/ml detergent-resistant 
hSOD1G85R aggregates and 526 µg/ml total protein, was 
aliquoted and stored at -80  °C until used for stability 
analysis of the strain A hSOD1 aggregates.

Quantification of detergent‑resistant hSOD1 aggregates
To determine the content of detergent-resistant hSOD1 
aggregates in the homogenate and strain A-aggregate 
preparation, an aliquot of each was sonicated for 1 min 
in ice-cold buffer, containing PBS, Complete EDTA-free 
protease inhibitor cocktail (Roche Diagnostics) and 
1% (v/v) NP-40 (for homogenate) or 2% (v/v) NP-40 
(for strain A preparation). After sonication, the sam-
ples were centrifuged at 337,000  g for 3  h at 4  °C and 
the hSOD1 content in the resulting pellet was analyzed 
by western blotting. A human hemolysate, calibrated 
against pure hSOD1, was used as standard for estima-
tions of hSOD1 content.
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Western blotting
Western blots were performed on Any kD Criterion 
TGX precast gels (BioRad) as previously described 
[29]. The immunoreactivity was detected using ECL 
Select reagent (GE Healthcare), recorded on a Chemi-
Doc Touch Imaging System (BioRad), and analyzed 
using Image Lab software (BioRad). The primary anti-
body used for western blot experiments was a rab-
bit anti-hSOD1 antibody raised against a peptide 
corresponding to aa 24–39 (1.7 μg/ml). This antibody is 
human-specific and does not detect murine SOD1.

Stability tests of strain A aggregates
The hSOD1 aggregate preparation was vortexed for 2 min 
and then 10 µl aliquots were incubated with or without 
different concentrations of trypsin (10, 100 and 1000 µg/
ml; Sigma-Aldrich); proteinase K (10, 50 and 250 µg/ml; 
Thermo Fisher Scientific); sodium dodecyl sulfate (SDS; 
0.3, 1, 3 and 10 g/L; Sigma-Aldrich); or glycochenodeox-
ycholic acid (GCDCA; 8  mM; Sigma-Aldrich) in a total 
volume of 50 µl of PBS for different time intervals (0, 0.5, 
1, 2, 4 and 6 h) at 37  °C using a shaker (IKA). GCDCA 
incubation was performed in the presence of the 
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Fig. 1  Peripheral inoculations of spinal cord homogenate from paralytic end-stage hSOD1G85R mice do not induce premature ALS in Tg mice. a–c 
Experimental overview: ~ 100-day-old pre-symptomatic hSOD1G85R Tg ALS-model mice were inoculated with spinal cord tissue homogenates 
from either end-stage paralytic hSOD1G85R Tg mice or control non-Tg C57BL/6 mice. We administrated the homogenates a into the spinal cord 
(spc) (single inoculation into the left ventral horn of the lumbar spinal cord, 1 µl), b i.p. (two inoculations into the peritoneal cavity, 150 µl each, 
1 week apart), and c i.m. (single inoculation into the right quadriceps femoris muscle, 10 µl). d–f Kaplan–Meier plots show the survival of the 
spinal cord homogenate inoculated hSOD1G85R Tg mice. As a reference, the plots contain survival data for non-inoculated hSOD1G85R Tg mice. 
d Concentration-dependent induction of premature fatal motor neuron disease after intraspinal inoculation of the Tg homogenate. Survival of 
hSOD1G85R Tg mice after spinal cord inoculation of an undiluted 10% homogenate from end-stage hSOD1G85R Tg spinal cord and 1:3, 1:9 and 1:27 
dilutions, compared to inoculation with control extract
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Complete EDTA-free protease inhibitor cocktail (Roche 
Diagnostics). Proteolysis with proteinase K was termi-
nated by the addition of phenylmethylsulphonylflouride 
(PMSF; 20 and 100  mM; Sigma-Aldrich). After com-
pleted incubation, each sample reaction was immediately 
attenuated by the addition of 500  µl of water as a dilu-
ent, snap-frozen in liquid nitrogen and stored at − 80 °C. 
Frozen samples were thawed in a water bath at 25 °C for 
2 min and then centrifuged at 25,000 g for 30 min at 4 °C 
and the supernatants were transferred to new tubes. The 
pellets were washed by suspension in 1 ml PBS and cen-
trifuged again at 25,000 g for 30 min at 4 °C. The amount 
of hSOD1 in both supernatant and pellet was determined 
by western blotting.

Statistical analyses
Statistical analyses were performed using Prism ver-
sion 6.00 (GraphPad). To test for statistical significance 
between two groups, Mann–Whitney U test was used. 
Alpha ≤ 0.05 was used as the cut-off for significance. All 
values are given as mean ± SD.

Results
Peripheral inoculations of transgenic homogenates 
do not induce premature ALS
We performed seed inoculations into the peritoneal cav-
ity (i.p.) and quadriceps femoris muscle (i.m.) and com-
pared with the effect of inoculations into the lumbar 
spinal cord (Fig. 1, Additional file 1: Table S1). The recipi-
ents were asymptomatic 100-day-old hSOD1G85R Tg 
mice, a well-characterized ALS mouse model, which has 
the advantage of a long symptom-free period followed by 
a late middle-age onset of aggregation and paresis [11, 
23].

As seeds, we used whole spinal cord homogenate 
preparations from end-stage hSOD1G85R Tg mice and 
non-Tg C57BL/6 control mice. The hSOD1G85R spinal 

cord homogenate, which contained ~ 1.7  ng/µl of strain 
A hSOD1 aggregates, was found to be highly active. 
Inoculations into the spinal cord using 1 µl of undiluted 
homogenate, as well as three- and ninefold dilutions, 
resulted in close to identical shortened survivals. Even 
a 27-fold diluted homogenate induced seeded patho-
genic aggregation and premature motor neuron disease 
that resulted in a significant shortening of the lifespan of 
inoculated mice (Fig. 1d, Additional file 1: Table S1).

In contrast, i.p. inoculation of 300 µl of the homogen-
ates, which is more than 8000 times the smallest effec-
tive dose used in spinal cord inoculations, did not induce 
premature paralysis in the hSOD1G85R Tg mice (Fig. 1e). 
Likewise, inoculations of 10  µl of the homogenate into 
the quadriceps femoris muscle failed to transmit seed-
ing of premature ALS-like disease (Fig.  1f ). There were 
no differences in survival between the mice that received 
i.p. or i.m. inoculations of hSOD1G85R Tg homogenates 
compared to recipients of non-Tg control spinal cord 
homogenates (Fig. 1e, f and Additional file 1: Table S1).

Intraperitoneal administration of transgenic homogenate 
does not induce hSOD1 aggregation in the CNS 
or peripheral tissues
Although SOD1 is ubiquitously expressed, end-stage 
paralytic hSOD1G85R Tg mice that accumulate a sub-
stantial hSOD1 aggregation in the spinal cord do not 
develop detectable hSOD1 aggregations in periph-
eral organs [10]. To determine whether the copious 
i.p. homogenate inoculations induced aggregation 
of the ubiquitously expressed hSOD1G85R in organs 
non-secluded by the blood–brain barrier, we analyzed 
hSOD1 aggregation in the liver and kidney, which both 
express higher levels of hSOD1G85R protein than spi-
nal cord tissue [16]. Skeletal muscle and sciatic nerve 
were also analyzed (Fig. 2a, Additional file 1: Table S2). 
We found no evidence for transmission of hSOD1 

(See figure on next page.)
Fig. 2  Intraperitoneal administration of hSOD1 aggregate seeds does not induce hSOD1 aggregation in the CNS or peripheral tissues. a and b Plots 
depict hSOD1 aggregates detected in the CNS (lumbar, thoracic, and cervical spinal cord, brainstem, brain and cerebellum) and peripheral organs 
(liver, kidney, sciatic nerve and quadriceps femoris muscle) of hSOD1G85R Tg mice that were inoculated with hSOD1G85R Tg or control spinal cord 
homogenates into the peritoneal cavity. Amounts of hSOD1 aggregates in tissue homogenates were analyzed with a binary epitope mapping assay 
using the hSOD1 57–72 Ra-Ab with an end-stage hSOD1G93A spinal cord homogenate used as standard (set to 1). a Black line indicates the median 
value. The shaded area indicates the range of background reactivity to spinal cord homogenates from non-Tg and SOD1-knockout mouse controls 
(mean ± 2 SD) (n = 8) [10]. Note that the antibody likely would show different background reactivities to dot-blotted homogenates of other tissues 
from controls. b Distribution of hSOD1 aggregates along the neuraxis in individual end-stage Tg mice. The amount of filtertrapped aggregates 
from different segments was normalized against the levels from the lumbar spinal cord. Note the altered scale used to visualize reactivity to brain 
and cerebellum homogenates. The results for individual mice are presented in different colors to improve distinction. c Immunohistopathological 
analysis of tissue sections from the lumbar spinal cord and brainstem of end-stage i.p. inoculated hSOD1G85R Tg mice. Tissue sections from the 
lumbar spinal cord and brainstem were stained using the hSOD1 131–153 Ra-Ab (green), isolectin B4 (red) as a marker for endothelial cells and DAPI 
(blue). Aggregated hSOD1 was similarly distributed around blood vessels in the lumbar spinal cord and brainstem in the end-stage mice inoculated 
with either hSOD1G85R Tg spinal cord homogenate or control homogenate. Scale bar represents 50 μm
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aggregation in peripheral tissues. The reactivity of the 
antibody in liver homogenates was comparable to the 
background reactivity with non-Tg control, or SOD1-
knockout spinal cord homogenates (Fig. 2a), and about 
1000 times lower than end-stage hSOD1G85R Tg spinal 
cord homogenates [11, 23]. The reactivity was even 
lower in skeletal muscle, kidney and peripheral nerve. 
There were no significant differences between mice 
inoculated with homogenates from hSOD1G85R Tg 
and the non-Tg control mice (Fig. 2a, Additional file 1: 
Table S2).

Even though there was no effect on the survival of the 
i.p. inoculated mice, we determined the distribution of 
hSOD1 aggregation along the neuraxis (Fig.  2b). We 
found no significant differences in distribution of hSOD1 
aggregation in the neuraxis between mice inoculated 
with homogenates from hSOD1G85R Tg and non-Tg con-
trol mice. The highest levels of hSOD1 aggregates were 
detected in the cervical spinal cord in both i.p. inoculated 
groups (Fig. 2a, b, Additional file 1: Table S2).

It has previously been shown that peripheral admin-
istration of Aβ results in distribution of Aβ aggregation 
close to blood vessels in the brain which is different 
from Aβ aggregation induced by intracerebral inocula-
tions [22]. To further explore the distribution of hSOD1 
aggregation, we performed an immunohistopathological 
analysis of tissue sections from the lumbar spinal cord 
and brainstem of end-stage i.p. inoculated mice. Human 
SOD1 aggregates around the blood vessels in the ventral 
horn of the lumbar spinal cord and brainstem were sim-
ilarly distributed in end-stage hSOD1G85R Tg mice i.p. 
inoculated with extracts from the hSOD1G85R Tg and 
control mice (Fig. 2c).

Stability of spinal cord‑derived hSOD1G85R aggregates
We found that large amounts of peripherally adminis-
trated hSOD1 aggregates did not induce premature ALS 
in hSOD1G85R Tg mice or aggregation in the periph-
eral organs (Figs. 1, 2a and Additional file 1: Tables S1, 
S2). To explore the physical stability of the aggregates 
as a contributing factor to the lack of disease transmis-
sion, we examined the resistance of hSOD1 aggregates 
to proteases and detergents. This evaluation is also of 
importance for the risk assessment of handling poten-
tially hazardous materials from patients or models of 
pathogenic aggregation.

Natively folded wild-type SOD1 is an extremely stable 
protein that is resistant to high concentrations of guani-
dinium chloride, urea, proteases, and detergents, whereas 
mutant SOD1 variants with a structural loosening of the 
native fold and misfolded SOD1 exhibit variable sensitiv-
ities [3, 7, 9, 24, 26, 33, 37, 40, 41, 50, 55]. To assess the 
resistance of strain A hSOD1 aggregates, we exposed a 
spinal cord-derived hSOD1G85R aggregate preparation to 
different concentrations of proteases and detergents and 
incubated the samples for different time intervals at 37 °C. 
Samples were centrifuged at 25,000 g before hSOD1 con-
tent in both supernatant and insoluble pellet fractions 
were analyzed by western blotting (Fig. 3, Additional file 1: 
Figure S1).

Both trypsin and proteinase K efficiently degraded the 
aggregates and no hSOD1 was detected in the insolu-
ble fraction after 30  min of incubation (Fig.  3a, b). We 
did not detect hSOD1 in the soluble fraction at any time 
point. Thus, hSOD1 aggregates are highly sensitive to 
protease digestion.

Next, we determined the solubility of hSOD1G85R 
aggregates following incubation with different concen-
trations of sodium dodecyl sulfate (SDS) (Fig. 3c, Addi-
tional file 1: Figure S1). We found that the mutant SOD1 
aggregates were completely dissolved by 10 g/L of SDS 
for 1  h at 37  °C and appeared in the supernatant frac-
tion (Fig.  3c). Thus, strain A SOD1 aggregates were 
highly susceptible to SDS. However, SOD1 aggregates 
were resistant to treatment with a high concentration of 
another anionic detergent, glycochenodeoxycholic acid, 
which is the principal bile acid in the gut (Fig. 3d).

Discussion
Multiple studies have demonstrated that peripherally 
administrated disease-associated proteins linked to 
other neurodegenerative diseases have a high potency 
to transmit aggregation to the CNS. PD- and MSA-
associated αSyn aggregates, and AD-associated Aβ- and 
Tau aggregates, can transmit and spread disease-asso-
ciated aggregation into the CNS via several different 
routes [15, 17, 20–22, 31, 38, 39, 44, 46, 54, 59]. None-
theless, both higher concentrations and longer incuba-
tion periods were required for peripherally delivered 
seeds compared to intracerebral inoculations [21, 22, 
54]. In contrast, our results suggest that i.p. or i.m 
injections of large amounts of hSOD1 aggregates with 

Fig. 3  Stability of spinal cord-derived hSOD1G85R aggregates. Human SOD1G85R aggregates were incubated either with or without a trypsin 
(10, 100 and 1000 µg/ml), b proteinase K (PK; 10, 50 and 250 µg/ml), c sodium dodecyl sulfate (SDS; 10 g/L) or d glycochenodeoxycholic acid 
(GCDCA; 8 mM) for different time intervals (0, 0.5, 1, 2, 4 and 6 h) at 37 °C. a–d Amounts of hSOD1, in both supernatant and insoluble fraction, were 
determined by western blotting. A human-specific SOD1 24–39 peptide antibody was used, and the reactivities was compared to a wild-type 
hSOD1 standard. Note that the hSOD1 standard has a lower electrophoretic mobility than the hSOD1G85R mutant

(See figure on next page.)
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prion-like properties do not transmit spreading patho-
genic aggregation or premature fatal ALS-like disease 
in the hSOD1G85R Tg model, which is highly suscepti-
ble to seeding of template-directed aggregation. The 
hSOD1G85R spinal cord homogenate used as seeds 
was highly potent and even a 27-fold dilution read-
ily induced ALS-like symptoms following spinal cord 
inoculations (Fig.  1d, Additional file  1: Table  S1). Still, 
administration of 270 times more spinal cord homogen-
ate via the i.m route or an 8000 times larger amount via 
the i.p. route did not induce premature fatal ALS-like 
disease (Fig. 1e, f, Additional file 1: Table S1). Moreover, 
there were no differences in distribution of aggregation 
pathology along the neuraxis in the hSOD1 aggregate 
inoculated, versus control inoculated mice. Thus, our 
current data suggest that the potential for transmission 
of SOD1-prion activity from the periphery to the CNS 
is very low.

SOD1 is ubiquitously expressed, and the levels of SOD1 
in the liver and kidney are six and three times higher, 
respectively, than in the CNS [29, 30, 42]. We, there-
fore, investigated whether high amounts of peripherally 
administrated hSOD1 aggregates would accumulate and 
possibly induce aggregation in tissues outside the CNS. 
Our highly sensitive BEM assay showed that there were 
no significant differences in aggregate load when compar-
ing liver, kidney, skeletal muscle, or sciatic nerves from 
end-stage Tg mice, inoculated i.p. with control or hSOD1 
aggregate containing homogenates (Fig.  2a, Additional 
file 1: Table S2). This finding is in line with previous stud-
ies in AD where no Aβ deposition was found in periph-
eral organs of end-stage transgenic mice following i.p. 
inoculations [22]. However, the amyloid precursor pro-
tein, as well as Aβ-peptides, are generally only sparsely 
expressed outside of the CNS [2, 52].

We showed that strain A SOD1 aggregates in prepara-
tions from hSOD1G85R Tg mouse spinal cords are highly 
sensitive to degradation by proteases. These results cor-
roborate with in cell-, and in vitro studies by Grad et al. 
which demonstrated that mutant SOD1 species, capable 
of transmitting misfolding to natively folded wild-type 
SOD1, are sensitive to protease treatment [26]. We fur-
ther show that strain A SOD1 aggregates are efficiently 
degraded by exposure to SDS, which is a constituent 
of commonly used household and laboratory deter-
gents (Fig. 3a–c). However, exposure to another anionic 
detergent, glycochenodeoxycholic acid, did not dissolve 
hSOD1 aggregates (Fig.  3d). Possibly the long flexible 
non-polar alkane chain in SDS interacts with and dis-
rupts the hSOD1 fibril core more efficiently than the 
bulky partly polar steroid nucleus in the bile acid. Future 
studies of potential spreading via the gastro-intestinal 
route may shed light on possible uptake and spread via 

the enteric nervous system. However, although the aggre-
gates were resistant to bile acid, the high sensitivity to 
proteases suggests that SOD1 aggregates should be effi-
ciently degraded by the abundant proteases in the gastro-
intestinal tract, if ingested.

In contrast, like the highly infectious PrPSc, aggregated 
αSyn and Aβ are remarkably stable and resistant to inacti-
vation. Moreover, both Aβ and αSyn aggregates extracted 
from the brain tissue of AD, PD, or MSA patients and Tg 
mice are highly robust and retain their seeding activity 
after exposure to both detergents and proteinase K [12, 
35, 36, 45, 56–59]. Hence, inferior physical stability and 
low resistance to proteases may be contributing factors 
to why peripherally administrated hSOD1 aggregates did 
not transmit seeded aggregation to the CNS.

Conclusions
While inoculation of minute amounts of SOD1 aggre-
gates with prion-like properties into the CNS read-
ily induces spreading aggregation and premature fatal 
motor neuron disease, peripheral administration of large 
amounts did not induce disease in the hSOD1 Tg mice. 
Moreover, although SOD1 is ubiquitously expressed, no 
SOD1 aggregation was detected in peripheral tissues. 
These findings indicate that any potential risk for trans-
mission of pathogenic SOD1 aggregation in exposed 
personnel handling samples from ALS patients or trans-
genic disease models should be considered low. How-
ever, precautionary safety measures should still be taken, 
especially while handling samples containing elevated 
concentrations of hSOD1 aggregates.

To this end, there is a need for guidelines for handling 
procedures and decontamination of laboratory material 
and surfaces, medical devices, and surgical instruments. 
Our results indicate that solutions of common com-
mercially available detergents, containing > 1% SDS, effi-
ciently degrade mutant hSOD1 aggregates.
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